Abstract

The non-local theory of peridynamics, based on integral equation of motion, offers a computation alternative for materials with discontinuities. In this study, the peridynamic material model parameters are calibrated using full field Digital Image Correlation measurements applied to simple tensile test experiments, circumventing thus the need for more challenging test setups/methods for the determination of the peridynamic material parameters (especially the critical stretch failure parameter). A two stage algorithm in the optimization software LS-Opt together with a MATLAB stage for performing the peridynamic simulation and an Excel stage for defining the outputs of the simulation are implemented to minimize the differences between the peridynamic model and experimental results. The material model parameters determined based on the simple test setup and the calibration procedure proposed here can then be used for modeling more challenging geometries and load cases in peridynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call