Abstract

In certain circumstances, millimeter-wavelength Doppler radar velocity spectra can be used to estimate the microphysical composition of both phases of mixed-phase clouds. This distinction is possible when the cloud properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently and used to quantitatively derive properties of the liquid droplet and ice particle size distributions. Additionally, the cloud liquid spectral mode, which is a tracer for clear-air motions, can be used to estimate the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study from the NASA Cirrus Regional Study of Tropical Anvils and Cloud Layers- Florida Area Cirrus Experiment (CRYSTAL-FACE) is used to illustrate this new retrieval approach. The case of interest occurred on 29 July 2002 when a supercooled liquid cloud layer based at 5 km AGL and precipitating ice crystals advected over a ground measurement site. Ground-based measurements from both 35- and 94-GHz radars revealed clear bimodal Doppler velocity spectra within this cloud layer. Profiles of radar reflectivity were computed independently from the liquid and ice spectral modes of the velocity spectra. Empirical reflectivity- based relationships were then used to derive profiles of both liquid and ice microphysical parameters, such as water content and particle size. Although the ice crystals extended down to a height of 4 km, the radar measurements were able to distinguish the base of the cloud liquid at 5 km, in good agreement with cloud-base measurements from a collocated micropulse lidar. Furthermore, radar-derived cloud liquid water paths were in good agreement with liquid water paths derived from a collocated microwave radiometer. Results presented here demonstrate the ability of the radar to both identify and quantify the presence of both phases in some mixed-phase clouds. They also demonstrate that, in terms of radar reflectivity, the ice component of mixed-phase clouds typically dominates the radar signal, while in terms of mean Doppler velocity, the liquid component can make a significant contribution. The high temporal resolution, 94-GHz Doppler radar observations were able to reveal a periodic cloud-top updraft that, combined with horizontal wind speeds, suggests a horizontal scale for the in-cloud circulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call