Abstract
A complex C• over an exact category [28] A is called exact if it is composed of exact triples Zi → Ci → Zi+1 in A. A complex over A is called acyclic if it is homotopy equivalent to an exact complex (or equivalently, if it is a direct summand of an exact complex). Acyclic complexes form a thick subcategory Acycl(A) of the homotopy category Hot(A) of complexes over A. All acyclic complexes over A are exact if and only if A contains images of idempotent endomorphisms [69].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have