Abstract

The derivative of the isotropic tensor function plays an important part in continuum mechanics and computational mechanics, and also it is still an opening problem. By means of a scalar response function f (Λ i I 1 , I 2 ) and solving a tensor equation, this problem is well studied. A compact explicit expression for the derivative of the isotropic tensor function is presented, which is valid for both distinct and repeated eigenvalue cases. Throughout the analysis, the formulation holds for general isotropic tensor functions without need to solve eigenvector problems or determine coefficients. On the theoretical side, a very simple solution of a tensor equation is obtained. As an application to continuum mechanics, a base-free expression for the Hill’s strain rate is given, which is more compact than the existent results. Finally, with an example we compute the derivative of an exponent tensor function. And the efficiency of the present formulations is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.