Abstract

AbstractIn the previous chapter we discussed isotropic and anisotropic tensor functions and their general representations. Of particular interest in continuum mechanics are isotropic tensor-valued functions of one arbitrary (not necessarily symmetric) tensor. For example, the exponential function of the velocity gradient or other non-symmetric strain rates is very suitable for the formulation of evolution equations in large strain anisotropic plasticity. In this section we focus on a special class of isotropic tensor-valued functions referred here to as analytic tensor functions. In order to specify this class of functions we first deal with the general question how an isotropic tensor-valued function can be defined.KeywordsAnalytic Tensor FunctionsTensor Power SeriesDouble CoalescenceDunford-Taylor IntegralTriple CoalescenceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.