Abstract
On the setting of the unit ball of euclidean n-space, we investigate properties of derivatives of functions in the harmonic Bergman space and the harmonic Bloch space. Our results are (1) size estimates of derivatives of the harmonic Bergman kernel, (2) Gleason's problem, and (3) characterizations in terms of radial, tangential, and ordinary derivative norms. In the course of proofs, some reproducing formulas are found and estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.