Abstract
In this paper, we investigate the properties of mappings in harmonic Bergman spaces. First, we discuss the coefficient estimate, the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit disk $$\mathbb D $$ of $$\mathbb C $$ . Our results are generalizations of the corresponding ones in Chen et al. (Proc Am Math Soc 128:3231–3240, 2000), Chen et al. (J Math Anal Appl 373:102–110, 2011), Chen et al. (Ann Acad Sci Fenn Math 36:567–576, 2011). Then, we study the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit ball $$\mathbb B ^{n}$$ of $$\mathbb C ^{n}$$ . The obtained results are generalizations of the corresponding ones in Chen and Gauthier (Proc Am Math Soc 139:583–595 2011). At last, we get a characterization for mappings in harmonic Bergman spaces on $$\mathbb B ^{n}$$ in terms of their complex gradients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.