Abstract

A consistent flexibility matrix is presented for a large displacement equilibrium-based Timoshenko beam–column element. This development is an improvement and extension to Neuenhofer–Filippou [1] (1998. ASCE J. Struct. Eng. 124, 704–711) for geometrically nonlinear Euler–Bernoulli force-based beam element. In order to find weak form compatibility and strong form equilibrium equations of the beam, the Hellinger–Reissner potential is expressed. During the formulation process, an extended displacement interpolation technique named curvature/shearing based displacement interpolation (CSBDI) is proposed for the strain–displacement relationship. Finally, the extended CSBDI technique is validated for geometric nonlinear examples and accuracy of the method is investigated concluding improved convergence rates with respect to the general finite element formulation. Also it is seen that the use of force based formulation removes shear locking effects. The results demonstrate considerable accuracy even in presence of high axial loading in comparison with the displacement based approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.