Abstract

This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step $$\delta _{t}$$ . It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.