Abstract

Familiar linear elastic and viscoelastic beam equations (Euler-Bernoulli, Rayleigh, Kelvin-Voigt, Timoshenko, and Shear Diffusion) and boundary conditions are derived from a nonlinear theory of large motions rather than the usual variational techniques. Also included is a fairly detailed derivation of the nonlinear theory and a careful discussion of the hypotheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.