Abstract

Lead contamination in soil has become a worldwide threat on food security and human health. To assess the Pb bioavailability and evaluate the safe use of low Pb polluted soil for food production, the speciation of Pb in 19 types of paddy soil were investigated by chemical extraction and X-ray absorption near-edge structure (XANES), and the uptake and accumulation characteristics of Pb in different soil-rice systems were investigated. Moreover, an empirical model was established to predict the content of Pb in rice grain, and field validation was conduct to evaluate model performance. Results showed that the proportion of available Pb in different soil satisfied normal distribution N (0.47, 0.23). Pb(CH3COO)2, GSH-Pb, PbO, PbHPO4 and Pb3(PO4)2 performed well in characterizing the speciation of Pb in different rhizosphere soils, and PbHPO4 accounted for more than 70%. The exceedance of Pb in grain in CK, 0.5X and 1X treatment were 10.5%, 36.1% and 42.1%, respectively, and the accumulation of Pb in grain was significantly related with Pb content in root. Carbonate and organic bound Pb in rhizosphere soil were two major Pb species that influenced the accumulation of Pb in rice. Moreover, content of total Pb, clay and SOM performed well in predicting the Pb content in grain, both for pot and field samples. Above all, our predicting model worked well in evaluating Pb accumulation in rice grain among low polluted paddy farmland (Total Pb<300mg/kg).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.