Abstract
Operating rule curves have been widely applied to reservoir operation, due to their ease of implementation. However, these curves are generally used for single reservoirs and have rarely been applied to cascade reservoirs. This study was conducted to derive joint operating rule curves for cascade hydropower reservoirs. Steps in the proposed methodology include: (1) determining the optimal release schedule using dynamic programming to solve a deterministic long-term operation model, (2) identifying the forms of operating rule curves suitable for cascade hydropower reservoirs based on the optimal release schedule, (3) constructing a simulation-based optimization model and then using the non-dominated sorting genetic algorithm-II (NSGA-II) to identify the key points of the operating rule curves, (4) testing and verifying the efficiency of the generated joint operating rule curves using synthetic inflow series. China’s Qing River cascade hydropower reservoirs (the Shuibuya, Geheyan and Gaobazhou reservoirs) were selected for a case study. When compared with the conventional operating rule curves, the annual power generation can be increased by 2.62% (from 7.27 to 7.46 billion kWh) using the observed inflow from 1951 to 2005, as well as by about 1.77% and 2.52% using the synthetic inflows generated from two alternative hydrologic simulation methods. Linear operating rules were also implemented to simulate coordinated operation of the Qing River cascade hydropower reservoirs. The joint operating rule curves were more efficient and reliable than conventional operating rule curves and linear operating rules, indicating that the proposed method can greatly improve hydropower generation and work stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.