Abstract
In this article, we first present a generalized methodology for deriving sensor brightness temperature sensor data records (SDR) from antenna temperature data records (TDR) applicable for Advanced Microwave Sounding Unit-A (AMSU-A) instruments. It includes corrections for antenna sidelobe contributions, antenna emission, and radiation perturbation due to the difference of Earth radiance in the main beam and that in the sidelobes that lie outside the main beam but within the Earth disk. For practical purposes, we simplify the methodology by neglecting the components other than the antenna sidelobe contributions to establish a consistent formulation with the legacy AMSU-A antenna pattern correction (APC) formula. The simplified formulation is then applied to the final AMSU-A instrument onboard the Metop-C satellite that was launched in November 2018, in order to compute APC coefficients for deriving SDR from TDR data. Furthermore, the performance of the calculated correction coefficients is validated by calculating the differences between the daily averaged AMSU-A (TDR and SDR) observations against radiative transfer model (O–B) simulations under clear sky conditions, and over open oceans. The validation results show that the derived temperature corrections are channel and scan position dependent, and can add 0.2–1.6 K to the antenna temperatures. In addition, the derived SDR O-B results exhibit a reduced and more symmetric scan angle-dependent bias when compared with corresponding TDR antenna temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.