Abstract
In Duchenne muscular dystrophy (DMD) patients, absence of dystrophin causes muscle wasting by impacting both the myofiber integrity and the properties of muscle stem cells (MuSCs). Investigation of DMD encompasses the use of MuSCs issued from human skeletal muscle. However, DMD-derived MuSC usage is restricted by the limited number of divisions that human MuSCs can undertake in vitro before losing their myogenic characteristics and by the scarcity of human material available from DMD muscle. To overcome these limitations, immortalization of MuSCs appears as a strategy. Here, we used CDK4/hTERT expression in primary MuSCs and we derived MuSC clones from a series of clinically and genetically characterized patients, including eight DMD patients with various mutations, four congenital muscular dystrophies and three age-matched control muscles. Immortalized cultures were sorted into single cells and expanded as clones into homogeneous populations. Myogenic characteristics and differentiation potential were tested for each clone. Finally, we screened various promoters to identify the preferred gene regulatory unit that should be used to ensure stable expression in the human MuSC clones. The 38 clonal immortalized myogenic cell clones provide a large collection of controls and DMD clones with various genetic defects and are available to the academic community.
Highlights
Muscular dystrophies are a group of inherited incurable myopathies characterized by ongoing rounds of skeletal muscle degeneration and regeneration
Biopsies were obtained from deltoideus medialis of 8 Duchenne muscular dystrophy (DMD) patients, 4 patients suffering from congenital muscular dystrophies (CMD) and 3 controls used as age-matched control
Immortalized Myogenic Cell Lines Generated from Duchenne Muscular Dystrophy, Congenital Muscular
Summary
Muscular dystrophies are a group of inherited incurable myopathies characterized by ongoing rounds of skeletal muscle degeneration and regeneration. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene, which lies on the X chromosome, where the loss of a functional dystrophin protein causes muscle wasting with an incidence of 1 in 5000 to 1/6000 boys [1]. In these patients, dystrophin protein deficiency causes recurring myofiber lesions, leading to the continuous activation of the regeneration process that is sustained by muscle stem cells (MuSCs). The first is that MuSC cultures were not pure, as they contained non-myogenic cells This issue has been overcome by the use of cell sorting techniques to obtain pure populations of myogenic cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.