Abstract
In many γ-proteobacteria, FadR is recognized as a global transcriptional regulator: in addition to being the most prominent regulator for FA biosynthesis and degradation, the protein also mediates expression of many genes in diverse biological processes. In Shewanella oneidensis, a bacterium renowned for its respiratory versatility, FadR directly controls only a few genes. However, the FadR loss substantially increases BCFA contents and impairs growth. In this study, we showed that FadR is required to activate a number of important FA biosynthesis genes, including fabA, fabB, and fabH1. Although most of these genes are controlled by FadR in a direct manner, they are not critically responsible for the phenotypes resulting from the FadR depletion. Subsequent investigations identified BKD encoded by the bkd operon as the critical factor for enhanced BCFA production. In the absence of FadR, the bkd operon is derepressed, resulting in elevated conversion of 3MOP to 3-methylbutanoyl-CoA, one of the direct substrates for BCFA synthesis. We further showed that the growth defect of the fadR mutant is due to BCAA shortage, a scenario also attributable to excessive BKD: 3MOP, the common substrate for both BCFA and BCAA, is disproportionately used for BCFA synthesis, leading to reduced production of BCAA. Collectively, our findings reveal that the S. oneidensis FadR regulon is surely larger than previously proposed and a new mechanism by which FadR impacts bacterial physiology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have