Abstract
In the yeast Saccharomyces cerevisiae, growth with a non-fermentable carbon source requires co-ordinate transcriptional activation of gluconeogenic structural genes by an upstream activation site (UAS) element, designated CSRE (carbon source-responsive element). The zinc cluster protein encoded by CAT8 is necessary for transcriptional derepression mediated by a CSRE. Expression of CAT8 as well as transcriptional activation by Cat8p is regulated by the carbon source, requiring a functional Cat1p (= Snf1p) protein kinase. The importance of both regulatory levels was investigated by construction of CAT8 variants with a constitutive transcriptional activation domain (INO2TAD) and/or a carbon source-independent promoter (MET25 ). Whereas a reporter gene driven by a CSRE-dependent synthetic minimal promoter showed a 40-fold derepression with wild-type CAT8, an almost constitutive expression was found with a MET25-CAT8-INO2TAD fusion construct due to a dramatically increased gene activation under conditions of glucose repression. Similar results were obtained with the mRNA of the isocitrate lyase gene ICL1 and at the level of ICL enzyme activity. Taking advantage of a Cat8p size variant, we demonstrate its binding to the CSRE. Our data show that carbon source-dependent transcriptional activation by Cat8p is the most important mechanism affecting the regulated expression of gluconeogenic structural genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.