Abstract

In the accompanying paper (Part A), depth-recursive tomography was applied to the CEL09 refraction data. A deblurred P-wave velocity image was obtained down to a depth of 20 km. This paper (Part B) is devoted to the interpretation of the upper- and middle-crustal structures of the Bohemian Massif imaged in the CEL09 section. Because of inherent ambiguity of the refraction method in imaging low-velocity zones, other well-known results based on other geophysical data sets are also used to independently verify the interpreted velocity features. Comparison with the density and velocity models previously obtained indicates that the presented P-wave velocity image has superior resolution revealing or verifying a number of geological features. The prominent lateral velocity changes encountered in the CEL09 pattern across the imaged crustal section were used to delineate the main terranes and deep regional fault zones such as the Krusne hory Fault, the SW continuation of the Litoměřice Fault Zone, the West and Central Bohemian Shear Zones, the Blanice-Rodl Fault, the Přibyslav-Vitis Fault and the Boskovice-Diendorf Fault. The 450-km-long CEL09 transect reveals seven major deeply rooted high-velocity (HV) anomalies identified as Variscan massifs intruded near or within these deep fault zones. They form buried ridges mostly parallel to the SW-NE trending Variscan strike. Their discovery allows new insights into a number of phenomena such as the West Bohemian earthquake swarms, the Saxothuringian paradox, the character of the Saxothuringian-Barrandian contact zone, the detachment surface due to the slab of the Saxothuringian crust subducting beneath the Tepla-Barrandian zone in the Devonian, the depth extent of the Marianske-Lazně Complex (MLC) as an equivalent unit of the Zone Erbendorf-Vohenstrauss (ZEV), the subsidence of the Barrandian syncline, the root zones of the Central and South Bohemian Plutons, the accretionary wedge formed along the Moravo-Moldanubian suture and its link with the Gfohl terrane, the Carpathian foreland relief and the subsidence observed in the Vienna Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call