Abstract
In this paper we prove near quadratic lower bounds for depth-3 arithmetic formulae over fields of characteristic zero. Such bounds are obtained for the elementary symmetric functions, the (trace of) iterated matrix multiplication, and the determinant. As corollaries we get the first non-trivial lower bounds for computing polynomials of constant degree, and a gap between the power depth-3 arithmetic formulas and depth-4 arithmetic formulas. The main technical contribution relates the complexity of computing a polynomial in this model to the wealth of partial derivatives it has on every affine subspace of small co-dimension. Lower bounds for related models utilize an algebraic analog of Nechiporuk lower bound on Boolean formulae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.