Abstract
We use broadband records from a dense seismic network deployed in and around the Qaidam Basin in northwestern China to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities as well as the P-wave velocity. Waveform cross-correlation is used to assist in the identification of the crustal phases and in determining their arrival times. Depth of the Conrad discontinuity is determined by fitting the travel times of Conrad-diffracted P-waves using a two-layer model. The depth of the Conrad discontinuity under the eastern part of the basin is shallower than the western part, which can be attributed to different crustal shortening mechanisms. The upper crust shortening in the western part of the basin leads to thickening of the upper crust, while multiple thrust faults result in the rise of the Conrad discontinuity in the east. These two different mechanisms determine the depth change of the Conrad discontinuity in the basin from the west to the east, which is supported by the results in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.