Abstract

The gallium vacancy is one of the dominant native point defects in β-Ga2O3, one that, together with its complexes, can have a major effect on free carrier densities and transport in this wide bandgap semiconductor. We used a combination of depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to identify the optical and energy-level properties of these defects as well as how their defect densities and spatial distributions vary with neutron irradiation and temperature-dependent-forming gas anneals. These studies reveal optical signatures that align closely with theoretical energy-level predictions. Likewise, our optical techniques reveal variations in these defect densities that are consistent with hydrogen passivation of gallium vacancies as a function of temperature and depth from the free Ga2O3 surface. These techniques can help guide the understanding and control of dominant native point defects in Ga2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.