Abstract
ABSTRACT To addresshow parent materials are affecting organic carbon dynamics in a soil profile, soils from a lithosequence comprising six parent lithologies under a rangeland ecosystem have been explored at three depth intervals for soil organic carbon (SOC) content and its 13C depth trends. Studied parent materials ranged from metamorphic (foliated: FM and non-foliated: NFM) to sedimentary (clastic carbonate: CCS) to plutonic (intermediate: IP, felsic: FP and intermediate felsic: IFP) geological contexts. The relationship between SOC concentration and its isotopic signatures to a depth of 50 cm in FM, NFM, FP and IFP profiles was well described by the kinetic fractionation of SOC during biodegradation. For CCS and IP lithologies, strong divergence from the Rayleigh equation was observed suggesting that the 13C enrichments in these soils resulted from both mixing different SOC pools and isotope fractionation related to the C mineralization. Results suggest that SOC across the lithosequence goes through different isotopic evolutions resulting from different 13C-enriched inputs and pedogenic properties as described by the extended Rayleigh equation (0 ≤ β C ≤ 0.80). These are presumably caused by the bedrock lithology implying that parent material affects C storage and dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.