Abstract
BackgroundMonolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon. We have recently investigated a detector geometry composed of a monolithic scintillator readout on two sides by silicon photomultiplier (SiPM) arrays, and we have proposed two parameters for the DOI determination: the difference in the number of triggered SiPMs on the two sides of the detector and the difference in the maximum collected signal on a single SiPM on each side. This work is focused on the DOI calibration and on the determination of the capability of our detector. For the DOI calibration, we studied a method which can be implemented also in detectors mounted in a full PET scanner. We used a PET detector module composed of a monolithic 20 × 20 × 10 mm3 LYSO scintillator crystal coupled on two opposite faces to two arrays of SiPMs. On each side, the scintillator was coupled to 6 × 6 SiPMs. In this paper, the two parameters previously proposed for the DOI determination were calibrated with two different methods. The first used a lateral scan of the detector with a collimated 511 keV pencil beam at steps of 0.5 mm to study the detector DOI capability, while the second used the background radiation of the 176Lu in the scintillator. The DOI determination capability was tested on different regions of the detector using each parameter and the combination of the two.ResultsWith both parameters for the DOI determination, in the lateral scan, the bias between the mean reconstructed DOI and the real beam position was lower than 0.3 mm, and the DOI distribution had a standard deviation of about 1.5 mm. When using the calibration with the radioactivity of the LYSO, the mean bias increased of about 0.2 mm but with no degradation of the standard deviation of the DOI distribution.ConclusionsThe two parameters allow to achieve a DOI resolution comparable with the state of the art, giving a continuous information about the three-dimensional interaction position of the scintillation. These results were obtained by using simple estimators and a detector scalable to a whole PET system. The DOI calibration obtained using lutetium natural radioactivity gives results comparable to the other standard method but appears more readily applicable to detectors mounted in a full PET scanner.
Highlights
Monolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon
This error comes from the fact that, when the 511 keV annihilation photons interact in the scintillators, the whole volume of the scintillators is taken into account to project the line of response (LOR) subtended by the two coincidence photons
We present the DOI performance of an improved PET detector module composed of a monolithic LYSO scintillator coupled on two opposite faces to two silicon photomultiplier (SiPM) arrays developed in the framework of the 4DM-PET INFN project [31, 32]
Summary
Monolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon. One of the main contributions to the degradation of the spatial resolution in positron emission tomography scanners is represented by the parallax error [1] This error comes from the fact that, when the 511 keV annihilation photons interact in the scintillators, the whole volume of the scintillators is taken into account to project the line of response (LOR) subtended by the two coincidence photons. The parallax error is negligible at the center of the field of view (FOV), while it increases at the periphery of the FOV The correction of this effect is important when the activity is distributed at the periphery of the FOV, close to the detector ring. Since detectors for preclinical PET have usually spatial resolution close or better than 1 mm, this can be achieved when the DOI resolution is approximately 2 to 4 mm full width at half maximum (FWHM)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.