Abstract

AbstractTsunamis generated by earthquakes involve physical processes of different temporal and spatial scales that extend across the ocean to the shore. This paper presents a shock‐capturing dispersive wave model in the spherical coordinate system for basin‐wide evolution and coastal run‐up of tsunamis and discusses the implementation of a two‐way grid‐nesting scheme to describe the wave dynamics at resolution compatible to the physical processes. The depth‐integrated model describes dispersive waves through the non‐hydrostatic pressure and vertical velocity, which also account for tsunami generation from dynamic seafloor deformation. The semi‐implicit, finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum‐conserved advection scheme with an upwind flux approximation. The two‐way grid‐nesting scheme utilizes the Dirichlet condition of the non‐hydrostatic pressure and both the horizontal velocity and surface elevation at the inter‐grid boundary to ensure propagation of dispersive waves and discontinuities across computational grids of different resolution. The inter‐grid boundary can adapt to bathymetric features to model nearshore wave transformation processes at optimal resolution and computational efficiency. A coordinate transformation enables application of the model to small geographic regions or laboratory experiments with a Cartesian grid. A depth‐dependent Gaussian function smoothes localized bottom features in relation to the water depth while retaining the bathymetry important for modeling of tsunami transformation and run‐up. Numerical experiments of solitary wave propagation and N‐wave run‐up verify the implementation of the grid‐nesting scheme. The 2009 Samoa Tsunami provides a case study to confirm the validity and effectiveness of the modeling approach for tsunami research and impact assessment. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.