Abstract
Depth image has been widely involved in various tasks of 3D systems with the advancement of depth acquisition sensors in recent years. Depth images suffer from serious distortions near object boundaries due to the limitations of depth sensors or estimation methods. In this paper, a simple method is proposed to rectify the erroneous object boundaries of depth images with the guidance of reference RGB images. First, an RGB–Depth boundary inconsistency model is developed to measure whether collocated pixels in depth and RGB images belong to the same object. The model extracts the structures of RGB and depth images, respectively, by Gaussian functions. The inconsistency of two collocated pixels is then statistically determined inside large-sized local windows. In this way, pixels near object boundaries of depth images are identified to be erroneous when they are inconsistent with collocated ones in RGB images. Second, a depth image rectification method is proposed by embedding the model into a simple weighted mean filter (WMF). Experiment results on two datasets verify that the proposed method well improves the RMSE and SSIM of depth images by 2.556 and 0.028, respectively, compared with recent optimization-based and learning-based methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have