Abstract
The main difficulties in anisotropic velocity analysis and inversion using surface seismic data are associated with the multiparameter nature of the problem and inherent trade‐offs between the model parameters. For the most common anisotropic model, transverse isotropy with a vertical symmetry axis (VTI media), P-wave kinematic signatures are controlled by the vertical velocity V0and the anisotropic parameters ε and δ. However, only two combinations of these parameters—NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η—can be determined from P-wave reflection traveltimes if the medium above the reflector is laterally homogeneous. While Vnmo(0) and η are sufficient for time‐domain imaging in VTI media, they cannot be used to resolve the vertical velocity and build velocity models needed for depth migration. Here, we demonstrate that P-wave reflection data can be inverted for all three relevant VTI parameters (V0, ε and δ) if the model contains nonhorizontal intermediate interfaces. Using anisotropic reflection tomography, we carry out parameter estimation for a two‐layer medium with a curved intermediate interface and reconstruct the correct anisotropic depth model. To explain the success of this inversion procedure, we present an analytic study of reflection traveltimes for this model and show that the information about the vertical velocity and reflector depth was contained in the reflected rays which crossed the dipping intermediate interface. The results of this work are especially encouraging because the need for depth imaging (such as prestack depth migration) arises mostly in laterally heterogeneous media. Still, we restricted this study to a relatively simple model and constrained the inversion by assuming that one of the layers is isotropic. In general, although lateral heterogeneity does create a dependence of P-wave reflection traveltimes on the vertical velocity, there is no guarantee that for more complicated models all anisotropic parameters can be resolved in a unique fashion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have