Abstract
Epitaxial Gd2O3 thin layers with the cubic structure were irradiated with 4-MeV Au2+ ions in the 1013â1015 cmâ2 fluence range. X-ray diffraction indicates that ion irradiation induces a cubic to monoclinic phase change. Strikingly, although the energy-deposition profile of the Au2+ ions is constant over the layer thickness, this phase transformation is depth-dependent, as revealed by a combined X-ray diffraction and ion channeling analysis. In fact, the transition initiates very close to the surface and propagates inwards, which can be explained by an assisted migration process of irradiation-induced defects. This result is promising for developing a method to control the thickness of the rare-earth oxide crystalline phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.