Abstract
Using x-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective ``skin layer'' of ${\text{V}}_{2}\text{H}$. In the skin layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.