Abstract

A deep band of {311} defects was created 520 nm below the silicon surface with a 350 keV Si implant followed by a cluster-forming rapid thermal anneal (800 °C, 1000 s). Chemical etching was used to vary the depth to the surface of the {311}-defect band. Afterwards, the defect dissolution was investigated at 750 °C for different times. Varying the depth in this fashion assures that only the depth and no other feature of the cluster distribution is changed. The {311} defects were analyzed by plan-view, transmission electron microscopy. We show that the dissolution time of the {311}-defect band varies linearly with depth, confirming that surface recombination controls the dissolution and is consistent with analogous observations of transient enhanced diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call