Abstract

AbstractFree surface flow in open-channel transitions is characterized by distributions of velocity and pressure that deviate from uniform and hydrostatic conditions, respectively. Under such circumstances the widely used expressions in textbooks [e.g., E=h+U2/(2g) and hc=(q2/g)1/3] are not valid to investigate the changes in velocity and depth. A depth-averaged form of the Bernoulli equation for ideal fluid flows introduces correction coefficients to account for the real velocity and pressure distributions into the specific energy equation. The behavior of these coefficients in curvilinear motion at and in the neighbourhood of control sections was not documented in the literature. Herein detailed two-dimensional ideal fluid flow computations are used to characterize the entire velocity and pressure fields in typical channel controls involving transcritical flow, namely the round-crested weir, the transition from mild to steep slope and the free overfall. The detailed two-dimensional ideal fluid flow solu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.