Abstract

AbstractWe have developed a simple and fast quantitative method for depth and shape determination from residual gravity anomalies due to simple geometrical bodies (semi-infinite vertical cylinder, horizontal cylinder, and sphere). The method is based on defining the anomaly value at two characteristic points and their corresponding distances on the anomaly profile. Using all possible combinations of the two characteristic points and their corresponding distances, a statistical procedure is developed for automated determination of the best shape and depth parameters of the buried structure from gravity data. A least-squares procedure is also formulated to estimate the amplitude coefficient which is related to the radius and density contrast of the buried structure. The method is applied to synthetic data with and without random errors and tested on two field examples from the USA and Germany. In all cases examined, the estimated depths and shapes are found to be in good agreement with actual values. The present method has the capability of minimizing the effect of random noise in data points to enhance the interpretation of results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.