Abstract

A two-stage deep learning-based scheme is presented to predict the Hamilton Depression Scale (HAM-D) in this study. First, the cross-sample entropy (CSE) that allows assessing the degree of similarity of two data series are evaluated for the 90 brain regions of interest partitioned according to Automated Anatomical Labeling. The obtained CSE maps are then converted to 3D CSE volumes to serve as the inputs to the deep learning network models for the HAM-D scale level classification and prediction. The efficacy of the proposed scheme was illustrated by the resting-state functional magnetic resonance imaging data from 38 patients. From the results, the root mean square errors for the HAM-D scale prediction obtained during training, validation, and testing were 2.73, 2.66, and 2.18, which were less than those of a scheme having only a regression stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.