Abstract

Tandem solar cells represent an elegant way of overcoming the efficiency limits of single-junction solar cells and reducing the light-induced degradation of amorphous silicon films. Stacked structures consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell allow a good utilization of the solar spectrum due to the band gap values of the two materials. These devices, firstly introduced by the IMT research group, were designated as “micromorph” tandem solar cells. To better exploit this concept, it is important to tune parameters like the band gaps and the short-circuit currents. In this work, we have realized micromorph tandem solar cells on Asahi U-type TCO-covered glass substrates. The intrinsic layer of both the amorphous top cell and the microcrystalline bottom cell is grown by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at 100 MHz at low substrate temperature (150 °C). Finally, a ZnO reflector and a metal contact complete the structure. No intermediate optical mirror between the two cells is used at this stage. Undiluted a-Si:H, with reduced band gap when compared to H 2-diluted amorphous silicon, is used as absorber layer in the top cell. As for the bottom cell, the high-pressure–high-power regime (up to 267 Pa–80 W) has been explored aiming at growing high-quality microcrystalline silicon at large deposition rates. The effect of the structural composition of the microcrystalline absorber layer on the current–voltage characteristic and spectral response of tandem devices has been investigated. An efficiency of 11.3% has been obtained with short-circuit current densities around 13 mA/cm 2, open-circuit voltages ∼1.34 V and fill factors ∼66%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.