Abstract

Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call