Abstract
During the past few decades, photoelectrochemical (PEC) water splitting has attracted significant attention because of the reduced production cost of hydrogen obtained by utilizing solar energy. Significant efforts have been invested by the scientific community to produce stable ternary metal oxide semiconductors, which can enhance the stability and increase the overall production of oxygen. Herein, we present the ternary metal oxide deposition of ZnCo2O4 as a route to obtain a novel photocatalyst layer on BiVO4 to form BiVO4/ZnCo2O4 a novel composite photoanode for PEC water splitting. The structural, topographical, and optical analyses were performed using field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and UV–Vis spectroscopy to confirm the structure of the ZnCo2O4 grafted over BiVO4. A remarkable 4.4-fold enhancement of the photocurrent was observed for the BiVO4/ZnCo2O4 composite compared with bare BiVO4 under visible illumination. The optimum loading of ZnCo2O4 over BiVO4 yields unprecedented stable photocurrent density with an apparent cathodic shift of 0.46 V under 1.5 AM simulated light illumination. This is also evidenced by the flat-band potential change through Mott–Schottky analysis, which reveals the formation of p-ZnCo2O4 on n-BiVO4. The improvement in the PEC performance of the composite with respect to bare BiVO4 is ascribed to the formation of thin passivating layer of p-ZnCo2O4 on n-BiVO4 which improves the kinetics of interfacial charge transfer. Based on our study, we have gained an in-depth understanding of the BiVO4/ZnCo2O4 composite as high potential in efficient PEC water splitting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.