Abstract
This study reports the deposition of TiN films on Co-Cr substrates to improve the substrates' mechanical properties and biological properties. In particular, the argon to nitrogen (Ar:N(2)) gas flow ratio was adjusted to control the microstructure of the TiN films. A Ti interlayer was also used to enhance the adhesion strength between the Co-Cr substrate and TiN films. A series of TiN films, which are denoted as TiN-(Ar/N(2))1:1, Ti/TiN-(Ar/N(2))1:1, and Ti/TiN-(Ar:N(2))1:3, were deposited by reactive DC sputtering. All the deposited TiN films showed a dense, columnar structure with a preferential orientation of the (200) plane. These TiN films increased the mechanical properties of Co-Cr, such as the critical load during scratch testing, hardness, elastic modulus and plastic resistance. In addition, the biological properties of the Co-Cr substrates, i.e. initial attachment, proliferation, and cellular differentiation of the MC3T3-E1 cells, were improved considerably by deposition of the TiN films. These results suggest that TiN films would effectively enhance both the mechanical properties and biocompatibility of biomedical Co-Cr alloys.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have