Abstract

Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04μm were used as carrier for depositing thin aluminum oxide (Al2O3) ultrafiltration membranes. These ultrafiltration membranes were obtained by coating, drying and calcination of a colloidal suspension of boehmite particles. After calcination, the membrane material consisted of nanosized γ-Al2O3 crystallites and had a narrow pore size distribution with average pore size of 5.5nm. Membrane thickness was tuned by repeating the coating of boehmite sol. By doing so, we were able to reduce the defect density on the membrane surface, as evidenced by SEM analysis and by the significant reduction of water permeance after depositing the second γ-Al2O3 layer. After five times coating, a 5.6µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of γ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.