Abstract

The deposition of high quality single crystal boron-doped diamond is studied. The experimental conditions for the synthesis of 1–2 mm thick boron-doped diamond are investigated using a high power density microwave plasma-assisted chemical vapor deposition reactor. The boron-doped diamond is deposited at a rate of 8–11.5 μm/h using 1 ppm diborane in the feed gas as the boron source, and the capability to overgrow defects is demonstrated. The experimental study also investigates the deposition of diamond with both 10 ppm diborane and 2.5–500 ppm of nitrogen added to the feedgas. Synthesized material properties are measured including the electrical conductivity using a four-point probe and the substitutional boron content using infrared absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.