Abstract

Multicomponent metallic glass films inheriting the superior mechanical properties and wide supercooled liquid regions of their bulk counterparts attract increasing attentions for applications in micro-electro-mechanical systems and nano-devices. In this paper, we systematically investigated the growth of multicomponent metallic glass films synthesized using single-target magnetron sputtering. It was found that the working argon gas pressures ( P Ar,) and sputtering power are two key factors governing film growth and composition. At high P Ar, the glassy films grow via a columnar mode, leading to rough film surface. At low P Ar, the films exhibit a negative growth exponent and a nearly atomically flat surface. At appropriate sputtering power and P Ar, the films can completely inherit the composition of alloy targets, which makes it possible to fabricate multicomponent glassy films with controllable composition using single targets. The mechanisms accounting for the growth of the glassy films are discussed in the framework of dynamic scaling theory. The diversely tunable film microstructure and composition are expected to lead metallic glasses towards new functional applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.