Abstract

Abstract High quality diamond films have been deposited by sequentially switching between high and low oxygen feed to a hot filament CVD system with constant hydrogen and methane flow rates. Since a high oxygen feed is effective in etching non-diamond components in a growing diamond film, a computer can be used to control the switching between a high oxygen-content gas mixture, which is used for etching, and a low oxygen-content gas mixture, which is used for deposition, in order to achieve a higher growth rate of diamond deposition without sacrificing the diamond quality. SEM photographs and Raman spectra show that by decreasing the period of each cycling time, better diamond films are obtained. Using a cycling time of less than one minute, diamond films of the same high quality are deposited at a higher growth rate. A short cycling time is necessary to remove undesirable non-diamond components in time, in order to grow high quality diamond films at high rates by the hot filament CVD method. The high oxygen-content cycle of the CVD process reduces the density of secondary nucleation and leads to diamond films with larger grain sizes and clearer crystal facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.