Abstract

The problem of buildup of hydrocarbon deposits on truck engine surfaces may reduce the fuel efficiency, in addition increasing the amount of unburned fuel as exhaust gases can lead to environmental risk. This problematic issue can be resolved by applying anti-stick coatings on engine pistons using PVD technique. In this work, broad range of coating substrate systems (Chrome based (CrN, CrAlTiN), Oxides (TiOx and ZrOx), Carbon based (Graphit-iC™ and Dymon-iC™) and special coating (TiB2), are investigated to determine their ability to act as anti-stick coatings. All the coatings investigated in this study, were applied on polished parts cut from engine piston cylinders. Characterizations were performed after applying droplets of engine oil and heat treating the surfaces up to 400 °C. Based on the evaluation of oil adhesion, surface energy, coating thermal stability, surface morphology, mechanical and crystallographic properties, the anti-stick performance ranking of coatings was suggested for truck engine piston application in order to improve their performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.