Abstract

The traffic and expression of mRNAs in neurons are modulated by changes in neuronal activity. The regulation of neuronal RNA-binding proteins is therefore currently receiving attention. Sam68 is a ubiquitous nuclear RNA-binding protein implicated in post-transcriptional processes such as signal-dependent splice site selection. We show that Sam68 undergoes activity-responsive translocation to the soma and dendrites of hippocampal neurons in primary culture. In unstimulated neurons transiently expressing a GFP-Sam68 fusion protein, 90% of the cells accumulated the protein exclusively in the nucleus, and 4% showed extension of GFP-Sam68 to the dendrites. This nuclear expression pattern required the integrity of the Sam68 N-terminus. When present, the dendritic GFP-Sam68 formed granules, 26% of which were colocalized with ethidium bromide-stained RNA clusters. Most of the GFP-Sam68 granules were completely stationary, but a few moved in either a retrograde or anterograde direction. Following depolarization by 25 mM KCl, 50% of neurons displayed dendritic GFP-Sam68. GFP-Sam68 invaded the dendrites after 2 hours with high KCl, and returned to the nucleus within 3 hours after termination of the KCl treatment. A control GFP fusion derived from the SC-35 splicing factor remained fully nuclear during depolarization. No significant change was observed in the phosphorylation of Sam68 after depolarization. Translocation of Sam68 to the distal dendrites was microtubule dependent. Blockade of calcium channels with nimodipine abolished the translocation. Furthermore, inhibition of CRM-1-mediated nuclear export by leptomycin B partially prevented the depolarization-induced nuclear efflux of GFP-Sam68. These results support the possible involvement of Sam68 in the activity-dependent regulation of dendritic mRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.