Abstract
Odontoblasts play an important role in the transduction of the sensory signals underlying dentinal pain. Transmembrane voltage-independent Ca(2+) influx in odontoblasts has been well described. Voltage-dependent Ca(2+) influx has also been reported, but its biophysical properties remain unclear. The aim of the present study was to investigate the desensitizing effect of voltage-dependent Ca(2+) influx in rat odontoblasts by measuring depolarization-induced intracellular free Ca(2+) concentrations ([Ca(2+) ]i ). Odontoblasts on dental pulp slices from newborn rats were acutely isolated and [Ca(2+) ]i measured by using fura-2 fluorescence. Repeated application of extracellular high-K(+) solution (50 mM), which induces membrane depolarization-elicited repeated and transient increases in [Ca(2+) ]i in the presence of extracellular Ca(2+). Increases in depolarization-induced [Ca(2+) ]i showed no significant desensitizing effect (p >0.05; Friedman test). These results suggest that odontoblasts express a voltage-dependent Ca(2+) influx pathway with no desensitizing properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have