Abstract

In this paper the development of the structural design of a deployable helical antenna made from fiber composite material as well as its deployment verification in Zero-G environment will presented. In the introduction the advantages of helical antennas will be pointed out and a potential field of application, the receiving of AIS (Automatic Identification System) signals from maritime vessels, will be presented. The next chapter deals with the antenna design where especially manufacturing aspects will be addressed. The test setup for deployment tests in weightlessness will be explained and the results recorded during the 15 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sup> parabolic flight campaign (PFC) of DLR (German Aerospace Center) in March 2010 will be shown. During this campaign the deployment of 4 different helix antennas was tested as well as reaction forces and the dynamical behavior were recorded. An outlook is given on the subsequent finite element (FE) nonlinear numerical analysis. The aim of these calculations is to correlate analysis and test results, to use the correlated models for further improvements of antenna parameters, and to enhance predictions of the antenna behavior and its effect on the satellites attitude control during and after deployment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call