Abstract

Robots that share activity spaces or physically interact with humans typically benefit from appropriate payload capacity, extensible workspace, low weight, safety, and space efficiency. The soft origami design and mechanism can meet many of these beneficial factors; however, achieving a high payload capacity remains challenging. In this letter, we developed a soft origami arm module with high variable stiffness (x300) and spatial efficiency (compressed x3.1). The buckling of facets into a cylindrical tube followed by its pressurization enables the arm to be highly stiffened. High-pressure capacity was obtained via the sewing-heat press fabrication process. We used a pneumatic pressure–tendon pair and utilized the frictional force between origami and tendon to prevent unintentional gravity-induced deformation while deploying. An analytical model was developed and compared to the experimental results. With our modular design, we could easily build functional robotic structures. Two robotic demonstrations were performed to examine the expandability of the modules. A variable-length robotic arm that mimics a human arm was built to manipulate typical objects. Additionally, a soft rover, which could carry 14 kg of weight and change its volume 29 times for improved spatial efficiency, was developed. This research suggests a new design methodology for practical soft robotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.