Abstract

AbstractSoft robots have attracted great attention in the past decades owing to their unique flexibility and adaptability for accomplishing tasks via simple control strategies, as well as their inherent safety for interactions with humans and environments. Here, a soft robotic manipulation system capable of stiffness variation and dexterous operations through a remotely controlled manner is reported. The smart manipulation system consists of a soft omnidirectional arm, a dexterous multimaterial gripper, and a self‐powered human–machine interface (HMI) for teleoperation. The cable‐driven soft arm is made of soft elastomers and embedded with low melting point alloy as a stiffness‐tuning mechanism. The self‐powered HMI patches are designed based on the triboelectric nanogenerator that utilizes a sliding mode of tribo‐layers made of copper and polytetrafluoroethylene. The novel soft manipulation system has great potential for soft and remote manipulation and human machine interactions in a variety of applications from elderly care to surgical operation to agriculture harvesting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call