Abstract
IntroductionMetabolic dysfunction is one of the hallmarks of sepsis yet little is known about local changes in key organs such as the heart. The aim of this study was to compare myocardial metabolic changes by direct measurements of substrates, such as glucose, lactate and pyruvate, using microdialysis (MD) in in-vivo porcine endotoxemic and hemorrhagic shock. To assess whether these changes were specific to the heart, we simultaneously investigated substrate levels in skeletal muscle.MethodsTwenty-six female pigs were randomized to three groups: control (C) n = 8, endotoxemic shock (E) n = 9 and hemorrhagic shock (H) n = 9. Interstitial myocardial pyruvate, lactate and glucose were measured using MD. Skeletal muscle MD was also performed in all three groups.ResultsMarked decreases in myocardial glucose were observed in the E group but not in the H group compared to controls (mean difference (CI) in mmol/L: C versus E -1.5(-2.2 to -0.8), P <0.001; H versus E -1.1(-1.8 to -0.4), P = 0.004; C versus H -0.4(-1.1 to 0.3), P = 0.282). Up to four-fold increases in myocardial pyruvate and three-fold increases in lactate were seen in both shock groups with no differences between the two types of shock. There was no evidence of myocardial anaerobic metabolism, with normal lactate:pyruvate (L:P) ratios seen in all animals regardless of the type of shock.In skeletal muscle, decreases in glucose concentrations were observed in the E group only (mean difference: C versus E -0.8(-1.4 to -0.3), P = 0.007). Although skeletal muscle lactate increased in both shock groups, this was accompanied by increases in pyruvate in the E group only (mean difference: C versus E 121(46 to 195), P = 0.003; H versus E 77(7 to 147), P = 0.032; C versus H 43(-30 to 43), P = 0.229). The L:P ratio was increased in skeletal muscle in response to hemorrhagic, but not endotoxemic, shock.ConclusionsEndotoxemia, but not hemorrhage, induces a rapid decrease of myocardial glucose levels. Despite the decrease in glucose, myocardial lactate and pyruvate concentrations were elevated and not different than in hemorrhagic shock. In skeletal muscle, substrate patterns during endotoxemic shock mimicked those seen in myocardium. During hemorrhagic shock the skeletal muscle response was characterized by a lack of increase in pyruvate and higher L:P ratios.Hence, metabolic patterns in the myocardium during endotoxemic shock are different than those seen during hemorrhagic shock. Skeletal muscle and myocardium displayed similar substrate patterns during endotoxemic shock but differed during hemorrhagic shock.
Highlights
Metabolic dysfunction is one of the hallmarks of sepsis yet little is known about local changes in key organs such as the heart
Emerging data suggest that endotoxemic shock may induce distinct changes in the myocardial metabolism that includes an accelerated aerobic glycolytic process resulting in glucose depletion and accumulation of pyruvate [8].These distinctive changes have been reported in skeletal muscle during endotoxemic shock but not during hemorrhagic shock [8,9]
Hemodynamic parameters Hemodynamic alterations in the E group were characterized by significant increases in heart rate (HR) and mean pulmonary arterial pressure (MPAP) and decreases in mean arterial pressure (MAP), stroke volume index (SVI) and left ventricular stroke work index (LVSWI) compared to the control group
Summary
Metabolic dysfunction is one of the hallmarks of sepsis yet little is known about local changes in key organs such as the heart. The aim of this study was to compare myocardial metabolic changes by direct measurements of substrates, such as glucose, lactate and pyruvate, using microdialysis (MD) in in-vivo porcine endotoxemic and hemorrhagic shock To assess whether these changes were specific to the heart, we simultaneously investigated substrate levels in skeletal muscle. The substrates involved in myocardial metabolism have generally been measured indirectly using coronary sinus sampling or in ex-vivo heart preparations It is not known if there is a specific pattern of changes for sepsis and if these only apply to cardiac muscle. This is highly relevant as approximately 15% of deaths related to septic shock have been attributed to myocardial depression [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.