Abstract
Complex liquids flow through channels faster than expected, an effect attributed to the formation of low-viscosity depletion layers at the boundaries. Characterization of depletion layer length scale, concentration, and dynamics has remained elusive due in large part to the lack of suitable real-space experimental techniques. The short length scales associated with depletion layers have traditionally prohibited direct imaging. By overcoming this limitation via adaptations of stimulated emission depletion (STED) microscopy, we directly measure the concentration profile of polymer solutions at a nonadsorbing wall under Poiseuille flow. Using this approach, we 1) confirm the theoretically predicted concentration profile governed by entropically driven depletion, 2) observe depletion layer narrowing at low to intermediate shear rates, and 3) report depletion layer composition that approaches pure solvent at unexpectedly low shear rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.