Abstract

Upper mantle xenoliths from the southern Rio Grande rift axis (Potrillo and Elephant Butte) and flank (Adam’s Diggings) have been investigated to determine chemical depletion and enrichment processes. The variation of modal, whole rock, and mineral compositions reflect melt extraction. Fractional melting is the likely process. Fractional melting calculations show that most spinel peridotites from rift axis locations have undergone <5% melting versus 7–14% melting for xenoliths from the rift shoulder, although the total range of fractional melting overlaps at all three locations. In the rift axis, deformed (equigranular and porphyroclastic texture) spinel peridotites are generally characterized by significantly less fractional melting (2–5%) than undeformed (protogranular) xenoliths (up to 16%). This difference may reflect undeformed xenoliths being derived from greater depths and higher temperatures than deformed rocks. Spinel peridotites from the axis and shoulder of the Rio Grande rift have undergone mantle metasomatism subsequent to melt extraction. Under the rift shoulder spinel peridotites have undergone both cryptic and patent (modal) metasomatism, possibly during separate events, whereas the upper mantle under the rift axis has undergone only cryptic metasomatism by alkali basaltic magma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.