Abstract

Plant and microbial phytases present in raw materials can cause a dephosphorylation of phytate (myo-inositol hexakisphosphate) (InsP6)) during food processing resulting in a broad range of different myo-inositol phosphates such as pentakisphosphate (InsP5) and tetrakisphosphate (InsP4) in foods. Here, we investigated whether the human intestinal epithelium is able to dephosphorylate myo-inositol phosphates (InsP6, InsP5-, InsP4-, InsP3-isomers) using an in vitro model with differentiated human Caco-2 cells cultured on semipermeable inserts. Incubation of InsP6 and an InsP5-isomer with cells for 3 h showed no dephosphorylation of both InsPs. Treatment of cells with a mixture of different InsP4-isomers, however, caused a formation of about 3.5% of an InsP3-isomer (Ins(1,5,6)P3) and treatment with a mixture of different InsP3-isomers caused about 20% formation of InsP2-isomers, respectively. Thus, human intestinal cells can contribute to the dephosphorylation of myo-inositol phosphates of partly dephosphorylated forms such as InsP3 and InsP4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.