Abstract
The endothelial isoform of nitric-oxide synthase (eNOS) is a key determinant of vascular tone. eNOS, a Ca(2+)/camodulin-dependent enzyme, is also regulated by a variety of agonist-activated protein kinases, but the role and regulation of the protein phosphatase pathways involved in eNOS dephosphorylation are much less well understood. Treatment of endothelial cells with vascular endothelial growth factor (VEGF), a potent eNOS agonist, leads to the activation of calcineurin, a Ca(2+)/camodulin-dependent protein phosphatase. In these studies, we used a phosphorylation state-specific antibody to show that VEGF promotes dephosphorylation of eNOS at serine residue 116 in cultured endothelial cells. Cyclosporin A, an inhibitor of calcineurin, completely blocks VEGF-induced eNOS dephosphorylation; under identical conditions, cyclosporin A also inhibits VEGF-induced eNOS activation. VEGF-induced eNOS dephosphorylation shows an EC(50) of 2 ng/ml and is maximal 30 min after agonist addition. eNOS phosphorylation at serine 116 is completely blocked by the protein kinase C inhibitor calphostin but is blocked by neither wortmannin (an inhibitor of phosphatidylinositide 3-kinase) nor the MAP kinase pathway inhibitor U0126. A phosphorylation-deficient mutant of eNOS in which serine 116 is changed to an alanine residue (S116A) shows significantly enhanced enzyme activity compared with the wild-type enzyme. Taken together, these findings indicated that VEGF-induced eNOS dephosphorylation at serine 116 leads to enzyme activation. Cyclosporin A is widely used as an immunosuppressive drug for which hypertension is an important dose-limiting side effect. Our results suggest that cyclosporin A-induced hypertension may involve, at least in part, the attenuation of endothelium-derived NO production through a calcineurin-sensitive pathway regulating eNOS dephosphorylation.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have